Frequency spectra of nonlinear elastic pulse-mode waves
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The frequency spectrum of simple waves is used to derive a closed form analytical representation
for the frequency spectrum of damped nonlinear pulses in elastic materials. The damping
modification of simple wave theory provides an efficient numerical method for calculating
propagating wave forms. The spectral representation, which is neither pulse length nor amplitude
limited, is used to obtain estimates for parameters of the nonlinear state relation for a sandstone
sample from published experimental data, and the results are compared with those of other theories.
The method should have broad application to many solids.

PACS numbers: 43.25.0MAB]

INTRODUCTION the time domain by modifying undamped simple wave
) ) ) propagatioh to include dissipation. The spectral representa-

Nonlinear pulse propagation experiments conducted &on of these waves is obtained by Fourier transform. Be-
Los Alamos National Laboratory are directed in part at de-5,se the wave forms are calculated in the time domain, the
termining nonlinear state relations for elastic earthgyg|ytion of the propagating pulses are easily visualized and
matenalsl.-ln one of the experimental configurations, axial jerpreted as the results of compressions and dilations. Re-
compressional pulses are driven in a two meter cylindricakits of this methodology include a transparent interpretation
rod by oscillating a piezo-electric crystal at one end. Fréf experiments and a more efficient and flexible numerical
quencies are of the order of 10 kHz and pulse times of theahapility for a wider variety of pulse profiles than is achiev-
order of a ms. The spectrum of resulting displacements igpje with other methods. The representation admits finite
obtained from displacement measurements made prior to t%plitude sources of finite pulse length.
arrival pf reflections from the undriven eAdMost of the To facilitate comparison with other theories, the repre-
theory in support of the program has modeled the stressgeniation is used in this article to analyze the spectrum of a
strain relation of samples assuming |_dea_l nonlinear ?'aSt'C'tysingIe frequency cw source assuming a cubic approximation
Efforts to explore the effects of dissipative mechanisms ang, the stress—strain relation. The values of the first nonlinear
additional nonI|nea}r contrlbutlon$_e.g_., hysteresis :_;md dis- coefficient found here are at the upper end of the range of
crete memoryare in progress. It is likely that nonideal ef- \51es found by Van Den AbeefeThe values of the second
fects will be interpreted in terms of a departure from those ofygpjinear coefficient found here are also contained in the
the |Qeal theory. In view of this, |t' is 'eV|den't that a pest range found by him, with differences in the upper and lower
poss!ble_ u_nc_ier_standlng of propagation in the ideal nonlmea,ranges differing by factors of 2 or less. Some general prop-
elastic I|m|t is _|mp0rtant- _ erties of propagation are illustrated numerically. A more de-

In this article, a representation of the frequency specigiled examination will appear in a separate paper.
trum for these experiments is derived that can be used t0  The nondissipative model is discussed in Sec. I, and the
algebralcally mfer parameters of assumed ideal elastigyact spectral representation for undamped wave propaga-
stress—strain relations from measured spectral data. Althougfyn, is derived in Sec. Il and illustrated for a monotonal pulse
other methods have been suggested in support of thegg the small amplitude source approximation. In Sec. Il
experlmentg,'atte'mpts to determine the state relation havegyyressions are derived for coefficients of cubic approxima-
depended primarily on frequency domain analyses of nonlingions o stress—strain relations assuming weak nonlinearity in
ear models which incorporate state relations with free paranyaymgs of spectral amplitudes. The spectral representation is
eters. Values of these parameters have been inferred by COsrected to include dissipation in Sec. IV, and state param-
parison of predicted spectral amplitudes using perturbatlogters(e_g_”g and 8) are inferred from experimental data and
methods with those generated in experiméritd The most compared to those obtained by Meegaral,? and Van Den
successful of these theories has been that of Van Defpeele. Some properties of damped wave propagation are

5 . . . .
Abeele’ Using incremental damping corrections to un-jjystrated numerically in Sec. V. We conclude with a dis-

damped wave propagation similar to those of an earlier study,,ssion of results.
of noise propagation in fluidyery good agreement with the
mode structure seen in the experiment was obtained.

In this article, propagating wave forms are calculated in'- THE NONDISSIPATIVE MODEL

The simplest one-dimensional model for studying non-

dAlso at UniversitePierre et Marie Curie, Bureau des bmiques, Tour 22, dISSIpat!Ve compre_ssmnal_ wave prop_agatlon from a pulsed
4, Place Jussieu, 75252 Paris Cedex 05, France. source in an elastic medium is the first ordex2 system

1375 J. Acoust. Soc. Am. 100 (3), September 1996 1375

Downloaded 03 Jul 2012 to 192.12.184.7. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



consisting of the equations of continuity and force balancehat in the first regior(i) bothv and € are constant on each
for the mass density per unit length(x,t), and displace- forward propagating pathd@/ dt=+c) and (ii) there is a
ment velocity,v (x,t). (The laboratory position coordinate is functional relation between ande:

X, and time ist.) Analysis of the dynamics predicted by this

model is facilitated by using Lagrangian coordinates., v:_fec(z)dg_ ®)
coordinates fixed in the materialAn element undergoing 0
displacements carries its Lagrangian coordinateyith it for Equation(3) implies that in the first regions, and there-

all time. [The laboratory coordinata, of an element attime  fore ¢, are functions of . Sincee is constant on the forward
t=T is a function of its initial position, or Lagrangian coor- propagating paths of this region and the signal speed depends
dinate,z; x=x(z,T). The displacement velocity is the partial gnly on ¢, each path is a straight line. The first region is,
derivative ofx with respeCt tOT] In terms of the Lagrangian therefore’ a “Simp|e wave region?”The Convergence and
Coordinate, the Continuity and force balance equations are divergence Of |inear forward propagating paths in the Simp'e
wave region distort the initial pulse form, thereby altering
the spectrum of the stress, strain, and velocity pulses con-

—0,=0, —~ 0,=0, ! ) .
1702 ot p* Tz fined to this region.

D)
_ p*\  d(x=2)
1I-—|=—— Il. SPECTRA IN THE SIMPLE WAVE REGION

If 7(z,T) is the time the forward propagating path in the
simple wave region passing through a poimt,T{) enters the
elastic material az=0 carrying information about displace-

(If a coordinate in the unstressed bay,is displaced to the
position, X, conservation of mass requirgs’ dz=p dx.)
Here, p* is the density in the absence of stress. The elasti

7 ents az=0,
stress o, of the material is assumed to depend on space an
time only via strain,e. SubscriptsT or z indicate partial =T z 4
differentiation with respect to the subscripted variable with "z 1)= c(e(0,7))" @)

the other held constantFamiliar second-order wave equa- . .
tions for nonlinear compressional wave propagation may bg atz, a tm_we-dep_endent pu_lsp(;,T), of Fhe stre;s, strain,
obtained from Eq(1) by elimination of variable3.If o is a or \{eloglty Is confined to a tlme_mtgrval n t'he S|mple wave
single valued function ok, plasticity and damping effects reglqn, its frequency spectrum is given by its Fourier trans-
are not included in this model. If the relation between streséorm'

and strain is one to one, as will be assumed in this article, the

1
state relation may be written as eithete) or (o). Both  p(z,0)=— f p(z,T)exp —iwT)dT,
functions vanish when their arguments are zero and are taken V2 Jpuse tengn
to be monotonically increasing functions of their arguments. 1 P
; . p(z,T) ,

The system, Eq(1), together with the state relation, =- ——— exp(—iwT)dT,
yields a hyperbolic system of first-order partial differential iwy2m Jpuise tength  IT
equations for the velocityy, and stressg (or strain param-
eter, ). The local characteristic patlier signal “speeds) __ 1 dp(0.7) exp{—iw[ 7
in (z,T) space are given By iw\27 Jinitial puise length T

dz +2z/c(e(0,7))]}d . 5

aT- - Vo' (e)lp*=xc(e), @ since the detector most often used in experiments is an ac-

celerometerp=v will be employed. Using Eq(3), Eq. (5)
whereo’(e€)=do/de. The space—time paths correspondingbecomes a Fourier transform of a functionwvof
to +c¢ and —c will be referred to as forward and backward

propagating information paths, respectivély(0)=c, is the lm: L i fU(O’T) exp{—iw
signal speed of linear wave propagatipn. V27 Jinitial puise tengt{ Jo
When analyzing wave dynamics initiated by a pulse at
one end of a baz=0, initiated atT=0, it is convenient to X[z/c(e(U))]}d’J} exp(—iwr)dr. (6)
partition space—time into two regions. The first region is the

collection of space—time coordinates at which time is suffi- Equation (6) may be used to determine parameters of
ciently early that propagation at a position has not yet beegqjinear state relations from displacement spectra of weakly
affected by ;lgnal reflection from the other end of the bar,snjinear pulses if the frequency spectrum is provided em-
The other is its complement. pirically.

Pulse propagation experiments at Los Alamos aimed at Assuming that the pulse is weakly nonlinear, so

studying nonlinear elastic properties of media analyze SPeGy,/c|<1, the expansion of the state relation is
tral properties of finite amplitude signal propagation in the

first region. These spectra are the subject of this article. It .2 B , 6 4

| . €)= Co)|l e+ — €+ =—¢€+---|. 7
can be showh’ that for these experiments E€l) predicts o(€)=(p"Co) 2! 3! ™
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(The notation for the coefficients in series expansions of state 9u?|Qz
relations has not been standardized: #&! and 83! in this ~ A(2,3Q) = V2m(Qcou) —g= |5

2c
article are the3 and 6 of Meeganet al? and theB/2 and &/3 0
of Van Den Abeelé) Using the expansion of the state rela- \/ Qz \? [6-2p%\?
tion together with Eq(3) yields an expansion for the strain x 2_00 + 38 :

in terms of the velocity
Assuming a sign for the convexity of the stress—strain

2 3
VLB (i 1 (5— 2[32)(1) b relation, 8 is determined by the acceleration amplitude at
Co 41C 12 Co 2Q). The restriction for the cubic coefficient, is then found
Substituting this expansion in the signal speed of the expo€ither from the amplitude at(L or 3. _
nent of the velocity transform results in an integral involving ~ While the expression foA(z,22) would be changed if
only the driving displacement velocity pulse and parameteré€ expansion were to be extended to include fourth powers

of the Taylor series expansion of the state relation. The ex9f v/C, the expressions fok(z,1(1) andA(z,3(2) would not
ponential can be expanded in a Taylor seriewio. The be. Even powers of the sine function contribute to ampli-

result is a Fourier transform of a sum of powers of the apiudes at even multiples d2, and odd powers contribute to
plied displacement velocity pulse, amplitudes odd multiples df.

— z
v(Z,0)=— exy{ —iw C—)
V2w 0 Ill. COMPARISON OF SIMPLE WAVE THEORY AND
EXPERIMENTAL DATA
i rE v(0,7) q
x| exp—ion Co n Within the context of the model, the spectral represen-

. tation given by Eq(6) is exact in the simple wave region.
:(”(O’T))( 1 (E )(U(O*T)> Consequently, the series expansion, E8), vyields the
Co 21\ 2¢q Co unique power series representation in source strength around
1 liwz i 07 (6—282) zero amp!ltude for undamped We_akly nonlmea}r elastic
+ o T, B o, 4+ pulses. Evidently, for any finite amplitude source, if the fre-
3112¢ Co B quencies employed or distances from the source at which
2 data are taken are sufficiently large, successive terms in the
(v(On-)) N ]

E(U(O,T)
Co

(8) series expansion will become comparable in magnitude, and
the expressions for the state parameters obtained using famil-

Equation(8) is the series expansion of the frequency speciar “zero-amplitude” perturbation methodology will be in-

trum in source amplitude for weakly nonlinear sources. Thecorrect. The expansion remains valid, but its utilization will

expansion may be carried out to any order, using as manlge more difficult.

terms as one desires in the expansion of the state relation. Data from pulse propagation experiments in a Berea

For frequencies and lead parametég., 8 and &) of the  sandstone b&rmre shown in Fig. (8) and (b).

state relation which leave the size of the exponential less  Using the data sets and the expressionsM@;,2(2) and

than about one-half, the first few terms should provide aA(z,3Q2),

reasonably good approximation to the spectrum for the pre-

Co

2

diction and interpretation of experimental data. Sz
. . N . Bu| <1,
If the source is predominantly multiperiod and single 2Cq
frequency with angular frequency), its velocity frequency
spectrum may be approximated using a cw source 5-2p° 2: 8A(z,30) 2_ % B ? (10)
g~ 9A(2,20) 2c, ¥ |

v(0,7)=pucy cosQ(7— 7g)
Substituting these values in the expressionX¢z,1(}), one

>0 is a Mach number for the soulcef infinite pulse
(n o P concludes that

length. The resulting frequency spectrum is a sum of Ditac

functions centered at integer multiples @f(i.e., o= +nQ, A(z,10)
n=0,1,2,3...). (Amplitudes of the acceleration spectrum are A-—,(lﬂ)%l' 11
just |w| times those of the velocity spectrumJp to and linea
including cubic terms im/c, one finds that amplitudes of the This is the small amplitude perturbation hypothesis in the
acceleration spectrum atare given by absence of damping. However, all data sets satisfy
A(z,1Q)=2m(Qcou) A(z,1Q) 1 12
— <.
% \/ 1 ,LL2 (QZ )2}24_[#2 (QZ ) 5—2,82}2 Alineal(lﬂ) 2
8 \2¢ 8 \2¢o B ’ State relation parameters inferred from amplitudes of higher

Oz frequency modes assuming nondissipative propagation are
— ,3‘, 9) incompatible with propagated spectral amplitudes measured
2¢ at the source frequency.

A(2,20)=\27(Qcou) p
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Source Displacement simple wave velocity is first imposed on the simple wave
signal speed paths:

v(z,T)=v(0,7)exp(—k2). (13

Maintaining the simple wave relation between velocity and
strain parameters, E@3), and applying the damped velocity,
Eq. (13), to the calculation of the signal speed path,

Displacement (m)

LERAALLL B ELARLLL SR B R N R R L

dT(z7) 1
dz c(ev(0.n)exp—k2)])’
—T (14)

— ‘ ﬁ
T(z,7)=71+ fo c(e[v(0,7)exp —K2)])’

The value of the velocity is carried unchanged as a function
of z to the new signal speed path initiated(@jr).

With this procedure, damping changes the convergence
and divergence of paths in what was formerly a simple wave
region. Except for the uniform exponential damping of the
amplitude, the assignment of velocity on each path is un-
changed. Consequently, except for the uniform damping, the
distribution of the spectral density is due solely to the change

FIG. 1. (a) Source spectra measured with an optical probe for a 13.75-kHz|r| the S|gnal speed paths. Since dampmg with distance from

drive; (b) spectra after the wave has propagated 0.58 m for a l3.75-kH£he SOl_Jrce t?-kes the V?I(?City to zero along each path, the
drive. Different curves represent different displacement amplitytideen  paths, if continued indefinitely, would each parallel that of a

from Meegaret al, Ref. 2. linearly propagating signakThis is illustrated in Sec. V.
However, these straight line paths, extrapolated linearly back
to z=0, would generally not arrive there at the same times
that they entered the sample. A weak amplitude signal with
an approximately invariant frequency spectrmodulo

In a recent analysis of pulse propagation experiments?Xp(_ k2)], different from that of the source, would propa-

Van Den Abeel2 employed equations without dissipation to gate inz. . .
numerically propagate nonlinear waves with discrete spectr Be_cause this procgdure change§ the geometry of the in-
short incremental distances in a semi-infinite bar. After eaclfbrmatlor? paths from linear to curvilinear, the mt_e-grand of
incremental step, the propagated spectral amplitudes wetg® Fourier transform no _Ionger sepa_rates the time depen-
modified assuming linear damping before being used as ence of the source velocity azdn a simple way.

source for propagation through the next incremental dis-

tance. Nonlinear evolution of the amplitudes was controlled
by a small amplitude ordering assumption. In effect, a simple’(Z, )
wave, generated by a cw source, was propagated in each

Displacement (m)

Frequency (kHz)

IV. DAMPING-CORRECTED SPECTRAL
REPRESENTATION

—kz

interval, and the amplitudes of the propagated wave are cor- _ _ © f dv(0,7)

rected at the end of the interval assuming a phenomenologi- V27 (iw) Jinitial puise length 9T

cal linear exponential damping. With this procedure it was

found that|3/2]~300-500 and¥6~2(10°-1¢F). The range ><ex4 . f * (He(ev(0.me ) ] dr. (15
for B is much lower than that of an earlier perturbation 0 ’

analysié that found |3/2|~(0.5-110%, whereas the lower

end of the range fob is in agreement with the earlier sug-

gested upper end of the range= O(82). However, for weak nonlinearities, expansion of the state re-
A modification of the representation of the frequencylation results in integrals of powers expkz) which are

spectrum for simple waves is how proposed in order to obeasily evaluated. The resulting exponential may be expanded

tain a mathematically tractable one that includes dampingn a power series, as in the simple wave case, and delta

effects. To obtain the representation, a linear damping of th&nctions recovered for the single frequency source.
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coe ¥ , z) _ (v(O,r))
v(z,w)= T ex —|wC—O f exp—iw7)Eq c dr,
v(0,7)) [v(07) 1 [iwz v(0,7)) 1 [iwz iz (6—-2p% _|[v(0,n))\?
el U0 ){”z(z—coﬂK)( L [ R e e RO
_l-ek _1(1—e‘2"2)_1+e‘kz
KE— ' CSaltem)=—2

The coefficientK andC are approximately (* kz/2) and (1+kz/2), respectively, if &kz<1. Forkz>1, their respective
values are Kz and 1/2.
Using the single frequency cw source approximation of Sec. I,

270z 212 1420z 5252 12
Ay(2,10) =27 (Qcoue*?) \/{1—% 2_COBK) } + '“_(2_00 ) ,Bﬁ C} ’
E

8
20, BK‘, (17

0z \/(Qz )2 (5—2/32 )2

Ay(2,20) = \2m(Qcope ) u

e WP
Ad(Z,3Q)= \ ZW(QCOME Z) ?

The coefficient

Alinear,d(Q) =V 27T(QC0,U,eikZ)

is the amplitude of the damped linearly propagating source mode. Ratios of the propagating damped modes provide two
equations in two unknowns:

Aq(z,1Q0) 0z 1 1/0z 21 [5-2p2 2
Ad<z,2m:\/(2_cOBK“) _§<2_<:OBK“”+@( B “C)'
(18
Aq4(z,3Q0) 9 Oz 2 1(6-2p7 2
Ad2290) 8 \/<2_cOBK“) +§( B “C) |
[
These relations imply k~1/0.23 m, |B|~(1.1)1C%, &6~(1.610%
(5—2/32 )2_ <8Ad(2139))2_(EBK )2 k=1/0.27 m, |B~(121% o~(6.91¢°. Y
g M7 77\ oay(z,20) 2c, TH ]

At z=0.58 m, where the data were taken, the values found

Oz 2 5 for k correspond to between two and three exponential fold-
(2_(:0 BKM> =—-Bx\B°+8, (19  ings of the source displacement. The linear exponential
damping coefficient often employed in the frequency space
11 [Ag(z,1Q) 2 1A4(2,30)? description of wave propagation ik=w/2Qc,. For the
B=42 Ay(z,20)]  9A4(z,2Q) |’ Berea sandstone sample of the Los Alamos experinGgi,

approximately 10. Using w=(27N)13.75 kHz N

For the data shown in Fig.@ and(b), B>0 and the posi-  _ 5 3 ) yields an exponential damping factor of .

tive square root must be chosen. Wit)/2c,) SK]* and The values ok given by Eq.(20) are comparable to those

2 2 H :
{[(5_. 23)13p] C deterr_nmed from ratios of measured used in the frequency domain whéh=2 or 3 (i.e., 1/0.31
amplitudes, the exponential decay const&ntmay then be and 1/0.21 m

evaluated using any of the measured amplitudes. In particu-

lar,
V. NUMERICAL EXAMPLES

k= E In m(QCOM)l(QZ/ZCO)'BKMl (20 The results of the previous sections are now illustrated
z Ao(z.20) numerically using specific parametric values. The simple

The implied valuesK and C, together with those of wave solution used here was obtained using a personal com-
[(Qz/2c,) BK)?] and {[(6—28%)/3B] C}?, then easily yield puter.
the admissible valueg and é. In the lossless, weakly nonlinear case, each wavietet

The self-consistent parameters sets for the data corrénfinitesimal piece of the waveforntravels in space—time
sponding to the two largest source strengths shown in Figalong characteristicksee Eq.(2)]. Figure Za) shows the
1(a) and(b) are characteristic paths for one cycle of a 13.75-kHz wave with
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Retarded time t-x/cg (ps)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Distance (m)

FIG. 3. Overlay of undamped and damped characteristics shown in Fig. 2.
Both sets of characteristics have been rotated so that the characteristics
corresponding to the zeros of the wave fofmhich propagate with the
linear signal spegdare horizontal. Undamped characteristics are the solid
lines, and damped characteristics are the dashed lines.

“nearly” parallel paths is different from those at=0. Be-
fore the damping results in approximately linear propagation,
finite amplitude effect$nearz=0) produce nonlinear diver-
gence and convergence of signal speed paths.

To better illustrate the effect of damping, an overlay of
the two sets of characteristics is shown in Fig. 3. For this
plot, the characteristics shown in Figiap and (b) were ro-
tated so that characteristics corresponding to the zeros of the
wave form(which travel at the small signal speeate hori-
zontal. The solid lines are the lossless characteristics, and the
FIG. 2. Characteristics for a single cycle of a 13.75-kHz wave of displace-dashed lines are the damped characteristics. With the damp-
mef:_t amplitude 510’7méfgve””d9 in ?h Befela Sla?dsmne b;lig \éagiisof?f theing that we have chosen for this example, the waveform
?eosnplgcet?\/reﬁla.rgr:tﬁz)rsuﬁgam:esg a::ﬂb) E(zjz‘afr?ﬁgg;Ilo=nzlr?1r)echarr]acteristicyzs becomes lineafi.e., the characteristics are parallet Only_ .
are shown. 0.2-0.3 m from the source. The damped characteristics

closely follow the undamped nonlinear paths #8£0.1 m.
Finally, Fig. 4 shows velocity waveforms generated us-
displacement amplitude5x10~" m. The typical nonlinear ing the same set of parameters. Figufa 4hows both loss-
parameters used in the calculation we@=10° and |ess(solid line) and dampeddashed ling waveforms after
6=3x10°. Figure 2a) shows that the wavelets near the the wave has propagated 0.5 m. The difference in distortion
peaks and troughs of the waveform both travel slower thametween the two waveforms is more obvious in Figb)4
those at the zeros, so the wave distorts. If the first nonlineaghere the damped waveform has been \/ertica"y expanded SO

term(i.e., the term containing) dominated the nonlinearity, that it has the same amplitude as the undamped wave form.

one of these would travel faster and the other slower; the

domma_nt contribution to the_ signal speed vyould be predom|v|_ DISCUSSION

nantly linear. The next nonlinear term dominates for the am-

plitude used in this example because of the very large value An analytical representation, given by Ed.5) for the

of 4. The contribution made by this term to the signal speedrequency spectrum of nonlinearly propagating pulses in

is predominantly cubic in the strain. earth materials, was derived. The representation is neither
In contrast to the undamped case, Fih)Zhows what pulse length nor amplitude limited. The mathematical theory

happens when a damping factb=4/m=1/0.25 m is ap- underlying the derivation of the spectral representation pro-

plied. In the illustration, the damping is implemented nu-vides a very efficient method for calculating both damped

merically by taking a small, lossless distance step and applyand undamped nonlinear propagating wave forms. lllustra-

ing the damping at the end of the step. The new, dampetions were shown in Sec. V.

waveform is used to initiate the next lossless step and the The representation was obtained by first deriving the

process is repeated. The contrast between Fay.ehd(b) is  exact representation of the frequency spectrum for one-

clear: The slopes of the paths rapidly become parallel; allimensional nonlinear pulse propagation, neglecting dissipa-

parts of the wave travel with the linear signal speed, aboution. Although that representation is validssuming un-

2.6 km/s in this case. However, the spacing between thesdgamped propagationfor any driving pulse profile, it was

Time (s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08
Distance (m)
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0.02 . . ‘ . . ‘ 6 far exceed those required by the perturbation ordering as-
sumption thats=0(82%). The values found imply that the
spectral amplitude of the(1term of the cw single frequency
source is very close to that of the propagating damped linear
source modgi.e., very little energy is transferred to other
modes. However, for the determination of state relation pa-
rameters, the validity of a small amplitude perturbation

(@

0.01 1

Particle Velocity (m/s)
o

-7 ] analysis requires both
1|/ wz v(0,7)
-0.01 | 2 1\ 2cg Co
(1-e™ (w/k )(0(0,7))
-0.02 2 2¢cq B Co
260 270
<1,
0.02
11](6—2p? c v(0,7)
3 B Co
001 [
= _[1+e7 | [5-28%\(v(07)
E B 6 B Co
g o <1.
o
s The first inequality, which restrictsw| For a givenz>0,
Yy guarantees the quadratic term in the source amplitude expan-
sion of the spectrum is smaller than the linear one. Given the
first inequality, the second then guarantees that the cubic
002 ‘ , . , ) term is smaller than the quadratic one. For the parameters of
T 190 200 210 220 230 240 250 270 these experiments, the first inequality is satisfieds two to
Time (us) three orders of magnitude smaller than ujityut the cubic

. . term in the expansion of the spectral representation in the
FIG. 4. (a) Velocity wave forms using the same set of parameters as those . . . .
of Figs. 2 and 3. Losslesolid line9 and dampeddashed lineswave ~ SOUrCe amplitude is about ten times that of the quadratic
forms are shown after the wave has propagated a distance of @t fhe term.
damped waveform has been vertically expanded to make differences be- |t js, nevertheless, interesting to note that if the calcula-
tween the distortions of the two waveforms more apparent. tion of the state parameters had been performed using the
perturbation method, approximately the same valuds @

applied in this article to a study of spectra of compressionahnd § would have been obtained. This follows from the fact
waves generated by finite amplitude, finite pulse lengththat, for the values found, the square root appearing in the
sources consisting of many cycles of a single frequency. lexpression for the spectral amplitude & & approximately
was shown that, for typical source frequencies and ampliequal to unity. Thus, ignoring contributions to th@ term
tudes of the experiments at Los Alamos, the inclusion ofrom nonlinear terms in the source amplitude expansion
dissipation in theoretical treatments is essential for even thgives about the same value kf Using this value for the
roughest self-consistent estimates of state relation parametatamping coefficient in the @ term yields the same values
from measured spectral data. for B. Consequently the same values &would be obtained

The spectral representation for the undamped simplérom the expression for the(Bspectral amplitude. This ap-
waves was then modified to include damping effects, and thproximate equivalence of methodologies is an accident at-
“corrected” spectral representation was applied to agairtributable to the experimental data. In a system that trans-
analyze spectra from a single frequency cw pulse sourcderred more energy from the (1 to the ) spectral
Values were obtained for the nonlinearity coefficiefggnd  amplitude, calculated values dfff would be larger and
6, of a cubic approximation to the stress—strain relation for avould more strongly affect the calculation of the decay con-
Berea sandstone bar using data from the experiments. Ttatant. It should be noted, in view of the relative sizes of cubic
results are given by Eq921). They were compared to and quadratic terms in the expansion of the spectral repre-
bounds obtained from numerical perturbation analyses. Theentation, that it would not be surprising to find that assum-
values obtained in this article for the coefficients of both theing a linear damping and/or approximating the spectral rep-
guadratic and cubic terms are in excellent agreement with theesentation by a low order polynomial in source amplitude
bounds obtained from the numerical perturbation analysis ohtroduces significant errors in the calculation of state rela-
Van Den Abeelé. tion parameters.

The B's obtained in this work are more than ten times As a final note, it is clear from the work of othrhat
smaller than those obtained by Meeggiral? The values of application of a classical, continuous equation of state to
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in propagating waves in rocks. Consequently, mu|tiva|ued2intervals from laboratory studies,” Nonlinear Geophgis. review).
equations of state may be needed for accurate modeling.S: B- Meegan, Jr, P. A. Johnson, R. A. Guyer, and K. R. McCall, "Ob-
. servations of nonlinear elastic wave behavior in sandstone,” J. Acoust.
However, the method presented here may have broad appll—SOC. Am.94, 3387(1993.
cation to nonhySteretiC materials that do not contain discrete‘A. Kadish, “Information paths and the determination of state relations
memory and to the evaluation of nonideal effects in some from displacement measurements of elastic rods,” J. Acoust. SocOAm.
earth materials. The Berea sandstone experimental result2489(1995.
were chosen as a means of illustration only. Berea sandston#. R. McCall, “Theoretical study of nonlinear elastic wave propagation,”
under ambient conditions almost certainly requires a multi- _J- Geophys. Re€9, 2591(1994.

valued equation of state in order to more precisely model its < Van Den Abeele, "Elastic pulsed wave propagation in media with
second or higher order nonlinearity,” J. Acoust. Soc. A%, 3334—-3345
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